Перевод: с русского на французский

с французского на русский

в зависимости от качества

  • 1 качество

    ср
    qualité; ( состояние) état

    качество соответствует... — la qualité est conforme à...

    - качество изготовления
    - качество изделия
    - качество обслуживания
    - качество продукции
    - качество работы
    - качества руководителя
    - качество решения
    - высокое качество
    - высшее качество
    - гарантированное качество
    - допустимое качество
    - коммерческое качество
    - лучшее качество
    - мореходные качества
    - надлежащее качество
    - ненадлежащее качество
    - неприемлемое качество
    - низкое качество
    - нормативное качество
    - обычное качество
    - обычное товарное качество
    - первоначальное качество
    - повышенное качество
    - качество, пригодное для торговли
    - приемлемое качество
    - среднее качество
    - среднее качество после проверки
    - среднее хорошее качество
    - стандартное качество
    - требуемое качество
    - хорошее нормальное качество
    - экспортное качество

    Русско-французский финансово-экономическому словарь > качество

  • 2 система кондиционирования воздуха

    1. système de conditionnement d'air

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 3 критерий оптимальности

    1. critère d'optimalité

     

    критерий оптимальности
    Наиболее существенный признак оценок, определяющих условия достижения цели какой-либо деятельности; К.о. стремится к экстремальному значению
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    критерий оптимальности
    Фундаментальное понятие современной экономики (которая переняла его из математического программирования и математической теории управления); применительно к той или иной экономической системе это один из возможных критериев (признаков) ее качества, а именно — тот признак, по которому функционирование системы признается наилучшим из возможных (в данных объективных условиях) вариантов ее функционирования. Применительно к конкретным экономическим решениям К.о. — показатель, выражающий предельную меру экономического эффекта от принимаемого решения для сравнительной оценки возможных решений (альтернатив) и выбора наилучшего из них. Это может быть, например, максимум прибыли, минимум затрат, кратчайшее время достижения цели и т.д. К.о. — важнейший компонент любой оптимальной экономико-математической модели. Чем больше (если нас интересует максимум) или чем меньше (если нужен минимум) показатель критерия, тем больше удовлетворяет нас решение задачи. Если решается задача составления хозяйственного плана, то это означает, что выбран наилучший, оптимальный план: все остальные варианты н е м о г у т дать столь же удовлетворительного результата. Если решается, например, задача исследования операций по организации строительства завода, то это означает, что выбраны наилучшая очередность работ, наиболее рациональное распределение сил и ресурсов и т.д., а все другие варианты приведут к более поздним срокам пуска завода. К.о. носит обычно количественный характер, т.е. он применяется для того, чтобы качественный признак плана, выражаемый соотношением «лучше — хуже», переводить в количественно определенное «больше — меньше». Но применяются и порядковые критерии. В последнем случае определяется лишь то, что один вариант лучше или хуже других, но не выясняется, насколько именно. В экономико-математических задачах критерию оптимальности соответствует математическая форма — целевая функция, экстремальное значение которой (см. Экстремум), характеризует предельно достижимую эффективность моделируемого объекта (т.е. наилучшие в заданном отношении структуру, состояние, траекторию развития). Другим возможным выражением К.о. является шкала (оценок полезности, ранжирования предпочтений и т.д.). В реальной практике планирования К.о. не может и не должен носить жесткого однозначного характера. Оперируя с ним, следует иметь в виду такие факторы, как вероятное изменение условий, возникновение новых возможностей реализации плана, а также новых задач. Приходится поэтому поступаться величиной критериального показателя ради гибкости плана и его надежности. Это достигается как формальными, так и неформальными методами. На схеме к статье «Экономическая система» (рис. Э.2) стрелка W имеет направление, соответствующее движению в сторону лучшего качества результатов функционирования экономической системы, т.е. в сторону лучшего удовлетворения общества в материальных благах. Упорядоченность точек шкалы W (и соответственно шкал V1, …, Vn) принято формализовать с помощью целевой функции F(w), которая отождествляется с К.о. Упорядочение точек шкалы W, как и точек шкал V есть субъективный акт. Оно может строиться в зависимости от того, что понимается под целью данной экономической системы, но с учетом ее реальных возможностей (объективная основа) и качества управления системой (субъективная основа). Способы упорядочения различны: а) установление цели внешним по отношению к данной экономической системе или иным обладающим соответствующими правами субъектом управления; б) согласование тем или иным способом шкал предпочтения самостоятельных субъектов управления (социальных групп, организаций и т.д.), принимающих решения исходя из своих интересов: компромисс, правило большинства и другие понятия группового (социального) выбора. Возможна классификация критериев оптимальности: а) по уровню общности: глобальный критерий оптимального развития в масштабе Земли, социально-экономический критерий, народнохозяйственный критерий, а также «глобальный» и локальные критерии оптимальности в частных системах моделей; б) по временному аспекту: статические и динамические (среди последних — оценивающие развитие от неоптимального к оптимальному состоянию и развитие как смену оптимальных состояний), текущие и финишные; критерии быстродействия (т.е. времени достижения цели); в) по способам формирования критериев — нормативные, социолого-статистические, компромиссные, унитарные и т.д.; г) по типу применяемых измерителей — полезностные, стоимостные, натуральные и др.; д) по способам использования критериев — практические, теоретические, политико-пропагандистские; е) по математической формализации — скалярные и векторные критерии, аддитивные и мультипликативные, интегральные критерии — во временном аспекте и интегральные — в пространственном аспекте и др. Таковы лишь наметки классификации К.о., однако предстоит еще немало сделать для ее отработки, унификации и стандартизации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > критерий оптимальности

  • 4 надежность

    1. fiabilité

     

    надежность
    Способность оборудования безотказно выполнять заданные функции при определенных условиях и в заданном интервале времени.
    [ГОСТ ЕН 1070-2003]

    надежность
    Способность машины, частей или оборудования исполнять требуемую функцию в регламентированных условиях и заданном временном отрезке без сбоев.
    [ ГОСТ Р 51333-99]

    надежность
    Свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.
    Примечание. Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств
    [ ГОСТ 27.002-89]
    [ОСТ 45.153-99]
    [СО 34.21.307-2005]
    [СТО Газпром РД 2.5-141-2005]

    надежность
    Собирательный термин, используемый для описания характеристики готовности и влияющих на нее факторов: безотказности, ремонтопригодности и обеспечение технического обслуживания и ремонта.
    Примечания
    1 Надежность используется только для общих описаний, когда не применяются количественные термины.
    2 Надежность является одним из зависящих от времени аспектов качества.
    3 Определение надежности и Примечание 1, приведенные выше взяты из главы 191 словаря МЭК 50, который также включает родственные термины и определения.
    [ИСО 8402-94]

    надежность
    Собирательный термин, применяемый для описания свойства готовности и влияющих на него свойств безотказности, ремонтопригодности и обеспеченности технического обслуживания и ремонта.
    Примечание
    Термин "надежность" применяется только для общего неколичественного описания свойства.
    [МЭК 60050-191:1990].
    [ ГОСТ Р ИСО 9000-2008]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > надежность

  • 5 натурные испытания

    1. essais in situ
    2. Essais en situ

     

    натурные испытания
    Испытания объекта в условиях, соответствующих условиям его использования по прямому назначению с непосредственным оцениванием или контролем определяемых характеристик свойств объекта.
    Пояснения
    Натурные испытания реализуются в случае выполнения трех основных условий:
    1. Испытаниям подвергается непосредственно изготовленная продукция (т. е. объект испытаний) без применения моделей изделия или его составных частей.
    2. Испытания проводятся в условиях и при воздействиях на продукцию, соответствующих условиям и воздействиям использования по целевому назначению.
    3. Определяемые характеристики свойств объекта испытаний измеряются непосредственно и при этом не используются аналитические зависимости, отражающие физическую структуру объекта испытаний и его составных частей. Допускается использование математического аппарата статистической обработки экспериментальных данных.
    Примеры. 1. На испытания представлена радиолокационная станция кругового обзора. Целью испытаний является определение дальности обнаружения этой станцией летательного аппарата (ЛА) заданного типа с заданной отражающей поверхностью. В процессе испытаний проводятся полеты ЛА с заданной отражающей поверхностью по заранее избранным маршрутам, дальность обнаружения РЛС определяется непосредственно (координаты РЛС известны заранее, координаты ЛА известны для любого момента времени), момент времени обнаружения определяется в процессе испытаний. В данном случае все три приведенные выше условия выполнены. Следовательно, РЛС подвергнута натурным испытаниям.
    Испытания останутся натурными, если вместо ЛА будет использовано некоторое физическое тело с характерными движениями, близкими к характеристикам ЛА заданного типа с заданной отражающей поверхностью.
    2. В условиях примера 1 испытания проводятся без использования ЛА. В процессе испытаний измеряется непосредственно чувствительность приемного тракта РЛС, мощность передатчика, частота излучаемой энергии и т. д. Результаты измерений подставляются в формулу радиолокации и определяется дальность обнаружения РЛС. В этом случае третье из приведенных выше условий не выполнено (фактически используется математическая модель - формула радиолокации) и испытания РЛС не являются натурными.
    [ ГОСТ 16504-81]

    Тематики

    EN

    FR

    56. Натурные испытания*

    Е. Verification test in site

    F. Essais en situ

    Испытания объекта в условиях, соответствующих условиям его использования по прямому назначению с непосредственным оцениванием или контролем определяемых характеристик свойств объекта

    Источник: ГОСТ 16504-81: Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > натурные испытания

  • 6 объект испытаний

    1. objet a essayer

     

    объект испытаний
    Продукция, подвергаемая испытаниям.
    Пояснения
    Главным признаком объекта испытаний является то, что по результатам его испытаний принимается то или другое решение по этому объекту - о его годности или забраковании, о возможности предъявления на следующие испытания, о возможности серийного выпуска и другие.
    В зависимости от вида продукции и программы испытаний объектом испытаний может являться единичное изделие или партия изделий, подвергаемая сплошному или выборочному контролю, отдельный образец или партия продукции, от которой берется оговоренная НТД проба.
    Объектом испытаний может быть макет или модель изделия и решение по результатам испытаний может относиться непосредственно к макету или модели. Однако если при испытании какого-либо изделия некоторые элементы его приходится для испытаний заменить моделями или отдельные характеристики изделия определять на моделях, то объектом испытаний остается само изделие, оценку характеристик которого получают на основе испытаний модели.
    Примеры: 1. Проводится испытание ЭВМ в составе устройств ввода и выгода, запоминающего устройства, арифметического устройства и т. д. Объектом испытаний считается ЭВМ в целом.
    2. На испытания представлен один из нескольких каналов системы связи. В этом случае объектом испытаний является данный канал системы связи.
    3. На испытания представляется партия телевизоров объемом N. Из N изделий делается выборка в n изделий, у которых определяются характеристики их свойств. Па основании использования выборочных методов оценки и контроля результаты испытаний распространяются на всю партию из N телевизоров. В этом случае объектом испытаний является вся партия из N телевизоров.
    [ ГОСТ 16504-81]

    EN


    FR


    Тематики

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > объект испытаний

  • 7 перегородка (в здании)

    1. paroi
    2. cloison

     

    перегородка
    Ненесущая внутренняя вертикальная ограждающая конструкция, разделяющая помещения
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Перегородки являются планировочным элементом, с помощью которого пространство, заключенное между несущими стенами, разделяется на помещения в соответствии с их функциональным назначением.

    В отличие от наружных и внутренних несущих стен, воспринимающих все силовые воздействия, действующие на здание, перегородки никаких нагрузок не несут, кроме собственного веса.

    В зависимости от назначения перегородки делятся на ограждающие и выгораживающие.
    Ограждающие перегородки полностью изолируют помещения друг от друга по всей высоте, выгораживающие - лишь на определенную высоту или части помещения. К ограждающим перегородкам предъявляются большие требования в части звукоизолирующей способности, и их диапазон в этой части находится в пределах от 30 до 50 децибел.

    Нижний предел обеспечивается при весе однородной конструкции от 20 до 100 кг/м2, верхний предел при весе от 150 до 270 кг/м2.

    Звукоизолирующая способность перегородок определяется на основании расчетов и требует специальных знаний и навыка. Вместо расчетов можно пользоваться данными таблиц, позволяющими без особых затрат времени выбрать нужную конструкцию и материал перегородки. Из табличных характеристик можно сделать вывод, что звукоизолирующая способность перегородок в пределах 40-50 дб характерна для междуквартирных, а 30-40 дб - для межкомнатных перегородок.

    Если в перегородке предусмотрена хотя бы одна дверь, то ее звукоизолирующая способность должна находиться в пределах 30 дб. При необходимости повысить ее уровень изменяется конструкция дверного полотна.

    В связи с распространением звука через неплотности сопряжения, поры материала, а при ударном воздействии, через конструкцию, особое внимание следует уделить герметизации мест сопряжения звукоизолирующими материалами и конструктивными преградами.

    Перегородки могут быть межквартирными, толщиной не менее 20 см, и межкомнатными, толщиной не менее 10 см. И те, и другие обычно делают из прочных малосгораемых, тепло- и звукопроводных материалов. Деревянные перегородки оштукатуривают.

    Перегородки из тонких бревен или пластин чаще всего устанавливают между квартирами или когда 'хотят теплое помещение отделить от холодного.

    Наиболее легкие перегородки - дощатые и каркасные. Они могут быть установлены непосредственно по балкам или лагам без устройства фундамента.

    Самая простая - дощатая однослойная перегородка из вертикально поставленных досок толщиной 40-60 мм.

    Самой экономичной по расходу материалов является каркасная перегородка.

    Капитальными называют перегородки из кирпича, гипса (алебастра), шлако- или опилкобетона. Они огнестойки и имеют хорошие звукозащитные качества.

    Самыми прочными, самыми долговечными зарекомендовали себя перегородки кирпичные.

    Расположение перегородок по отношению к балкам
    Перегородка опирается на балку, и с двух сторон ее закрепляют брусками, сечение которых равно сечению половых досок, а бруски закрывают плинтусами.

    При установке перегородок вдоль балок между последними врубают особые бруски, называемые ШПАЛАМИ, на которые крепят лагу - лежень.

    Иногда в лаге выбирают паз для досок перегородок (в балках его не выбирают). В этом случае в лагах обязательно крепят диафрагму - доску, поставленную на ребро.

    Для установки перегородки поперек балок для нее кладут лаги и закрепляют их, а род лагами устраивают диафрагму.

    Ее назначение - снизить различные звуки, которые могут проникать через перекрытие, а также удержать тепло и обособить перекрытие друг от друга.

    Выполнение перегородок Между потолком и перегородкой обычно ставят зазор на величину осадки (не менее 10 см), который заполняют паклей, смоченной в гипсовом растворе. Перегородки можно" ставить и после окончательной осадки дома, примерно через год после его постройки.

    Перегородки из тонких бревен или пластин достаточно тяжелые, поэтому их нужно возводить на балке с подготовленными под нее столбиками.

    Бревна такой перегородки обычно притесывают, конопатят, штукатурят, а в обвязках крепят прямыми шипами.

    Если при выполнении дощатой однослойной перегородки применяют чисто обрезанные доски без боковых пахов и гребней, их нужно скреплять между собой через 1 -1,5 м по высоте деревянными шпонками или косыми гвоздями.

    Такие перегородки обшивают листовыми материалами (фанерой, древесноволокнистыми плитами, плотным картоном) и оштукатуривают. Чтобы уменьшить поперечное коробление широких досок, их раскалывают на более узкие и делают местные трещины.

    Звукоизоляция отдельных дощатых перегородок невысокая, поэтому применять их для звукоограждения жилых помещений, особенно спальных комнат, не рекомендуется.

    Устанавливают перегородку таким образом. На потолке крепят доску, к которой с одной стороны прибивают треугольный брусок. Затем ставят доски и закрепляют их вторым бруском. К балкам и потолку можно прибить бруски, образующие паз.

    С одной стороны перегородки верхний и нижний бруски делают короче на 25-30 см, что необходимо для вставки досок. Сами же доски должны быть на 1 см короче расстояния между обвязкой. Широкие доски надкалывают, а потом в места надкола забивают небольшие клинья и вставляют доски в пазы. Для жесткости их между собой связывают шипами, устанавливаемыми через 100-140 см, но вместо шипов можно использовать и гвозди.

    Более надежны по звукоизоляционным качествам двух- и трехслойные дощатые перегородки с внутренней прокладкой из пергамина (строительной бумаги), картона или старых газет (3-4 слоя). В таком случае можно использовать более тонкие доски различной длины, но сбитые заранее в готовые щиты.

    Двойные дощатые перегородки чаще всего собирают из щитов шириной 50-60 см с четвертями по кромкам.

    Из длинных досок двойные дощатые перегородки делать не следует.

    Для большей жесткости на вертикально скрепленные доски можно набить второй слой досок под углом 45 градусов, то есть по диагонали. Между этими слоями можно проложить толь, картон или пергамин.

    Для каркасной перегородки применяют бруски или доски толщиной 50-70 мм, которые в зависимости от гибкости листовой или погонажной обшивки устанавливают на расстоянии 40-60 см.

    Лучший материал для обшивки каркасных перегородок - фанера толщиной 6-8 мм или листы сухой гипсокартонной штукатурки толщиной 10-14 мм. Древесноволокнистые плиты (ДВП) толщиной 4 мм не годятся для обшивки, потому что при переменной влажности они коробятся.

    Каркасно-обшивные перегородки
    состоят из обвязки, стоек и обшивки. При необходимости между стойками ставят дверную коробку.

    Стойки делают из брусков или досок, сечение которых зависит от толщины перегородок. Ставят стойки через 40-120 см друг от друга, а крепят к обвязке шипами или гвоздями, обшивка - тесовая.

    Широкие доски надкалывают. Сначала обшивку полностью пробивают с одной стороны, затем с другой. Если перегородку утепляют, то вторую сторону зашивают не сразу, а рядами.

    Прибив несколько досок на высоту 50-100 см, пространство между обшивкой засыпают шлаком, опилками с известью и гипсом. Иногда вместо сухой засыпки используют густую массу, которая требует тщательной сушки. В таком случае стойки рекомендуется ставить чаще, а перегородки оштукатуривать мокрой штукатуркой или обивать различными листами (сухой штукатуркой, древес-новолокнистыми листами, фанерой и т. д.).

    Стойки для перегородок с заполнителем из плит камыша и соломы делают по толщине утеплительных плит, а размещают на расстоянии их ширины.

    Укрепив стойки, между ними ставят камышитовые (соломитовые) плиты и крепят гвоздями, на которые предварительно надевают шайбы диаметром 2-2,5 см.

    Крепить плиты к доскам можно и на дощатую обивку. Все щели между плитами конопатят или промазывают гипсовым раствором и штукатурят.

    Но их можно применять двойными, склеив предварительно шероховатыми поверхностями попарно, во влажном состоянии, под равномерно распределенной нагрузкой.

    При обшивке каркаса под них желательно подложить слой пергамина или картона. Для улучшения звукоизоляции пространство между обшивками можно заполнить опилкобетоном, стружками или старыми газетами.

    Если дощатые или каркасные стены устраивают в ванной или душевой, внутреннюю поверхность оштукатуривают цементным раствором или обшивают асбестоцементными листами, а пространство внутри каркаса оставляют свободным с естественной циркуляцией воздуха.

    Для перегородок из кирпича, гипса (алебастра), шлако- или опилкобетона требуются либо самостоятельные фундаменты, либо жесткое железобетонное перекрытие. Лишь тонкие перегородки из гипса и опилкобетона можно в отдельных случаях опирать непосредственно на деревянные балки или лаги.

    При этом балки должны быть усилены, иметь пролет не менее 3 см, а сами перегородки следует проармировать, чтобы избежать деформационных трещин.

    Перегородки из кирпича и шлакобетона можно делать лишь по железобетонному перекрытию или на мелких фундаментах, закладываемых в теплом подполье.

    В домах с проветриваемым подпольем и деревянным цокольным перекрытием такие перегородки применять не нужно, потому что для них необходимо устройство заглубленных фундаментов.

    Гипсовые перегородки обычно выкладывают из готовых блоков заводского или индивидуального изготовления. Их размеры выбирают с таким расчетом, чтобы масса блока не превышала 25-30 кг. Оптимальная толщина гипсовой перегородки - 8 см.

    Поскольку гипс быстро твердеет и набирает прочность, из него в условиях строительства даже при наличии одной разборной формы можно за короткий срок изготовить много отдельных блоков - 3-4 за один час.

    Для экономии и облегчения массы блока гипс перед затворением водой смешивают с опилками или шлаком в пропорции 1:2 или 1:4 (по объему).

    Готовые гипсовые блоки можно укладывать в перегородку практически на любом растворе: гипсопесчаном, цементно-песчаном, глинопесчаном, цементно-известковом и т. д.

    Для плотного прилегания друг к другу блоки формуют с внутренними горизонтальными или вертикальными пазами, которые заполняют раствором в процессе кладки.

    Если необходимо, в горизонтальные швы для прочности укладывают проволоку, покрытую антикоррозийным составом (битумом или лаком), или тонкие деревянные рейки. При хорошем формовании и аккуратной укладке блоков поверхность гипсовой перегородки получается достаточно ровной и требует лишь затирки горизонтальных и вертикальных швов.

    В отличие от гипса, шлакобетон и особенно опилкобетон сохнут и твердеют медленно, поэтому изготовление из них перегородок требует длительного времени и одновременного использования нескольких форм.

    Объемный состав бетона и технология изготовления блоков могут быть применены при возведении внутренних перегородок. При тщательном формовании и аккуратной кладке поверхность таких перегородок также получается достаточно ровной и в большинстве случаев требует лишь затирки монтажных швов. Оптимальная толщина перегородок из легких бетонов - 10-12 см.

    Для возведения кирпичных перегородок используют кирпич, укладывая его либо плашмя вдоль перегородки (толщина 120 мм), либо на ребро (65 и 88 мм). Лучше всего использовать красный кирпич, силикатный или сырец. Можно также использовать шлакобетонные камни, но они более толстые и уменьшают площадь помещений.

    Кладку кирпичных перегородок ведут впустошовку на цементно-песчаном растворе с добавлением известкового или песчаного теста. Перегородки, выкладываемые на ребро, при их длине не более 1,5 м армируют через 3-5 рядов проволокой диаметром 3-6 мм.

    Поверхность кирпичных перегородок оштукатуривают или облицовывают керамической плиткой (в санитарных узлах, вдоль кухонного оборудования).

    [ http://brigadamasterov.ru/fotofile/peregorodki]

    Тематики

    Обобщающие термины

    Действия

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > перегородка (в здании)

  • 8 система водоснабжения

    1. système d'approvisionnement en eau
    2. système d'alimentation en eau
    3. réseau d'adduction d'eau

     

    система водоснабжения
    Комплекс взаимосвязанных инженерных устройств и сооружений, обеспечивающих потребителей водой в требуемом количестве и заданного качества. Система водоснабжения включает в себя устройства и сооружения для забора воды из источника водоснабжения, ее транспортирования, обработки, хранения, регулирования подачи и распределения между потребителями.
    [Журба М. Г., Соколов Л. И., Говорова Ж. М. Водоснабжение: Проектирование систем и сооружений. Учебник. - М.: АСВ, 2003.]

    система водоснабжения
    Комплекс сооружений, включающий водозаборы, насосные станции, очистные сооружения, водопроводную сеть и резервуары для обеспечения водой определённого качества различных потребителей
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]


    Классификация систем водоснабжения
    Все многообразие встречающихся на практике систем водоснабжения классифицируется по следующим основным признакам:
    • по назначению:
      • хозяйственно-питьевые;
      • противопожарные;
      • производственные;
      • сельскохозяйственные.
    Перечисленные типы систем могут быть как самостоятельными, так и объединенными. Объединяют системы в том случае, если требования, предъявляемые к качеству воды одинаковые или это выгодно экономически;
     
    • по характеру используемых природных источников:
      • системы, получающие воду из поверхностных источников (реки, озера, водохранилища, моря, океаны);
      • системы, забирающие воду из подземных источников (артезианские, грунтовые);
      • системы смешанного питания (при использовании различных видов водоисточников);
    • по территориальному признаку (охвату):
      • локальные (одного объекта) или местные;
      • групповые или районные, обслуживающие группу объектов;
      • внеплощадочные;
      • внутриплощадочные;
    • по способам подачи воды:
      • самотечные (гравитационные);
      • напорные (с механической подачей воды с помощью насосов);
      • комбинированные;
    • по кратности использования потребляемой воды (для предприятий):
      • прямоточные (однократное использование);
      • с использованием воды (двух-трехкратное);
      • оборотные (многократное использование воды, осуществляемое по замкнутой, полузамкнутой схеме или со сбросом части воды - продувкой);
      • комбинированные;
    • по видам обслуживаемых объектов:
      • городские;
      • поселковые;
      • промышленные;
      • сельскохозяйственные;
      • железнодорожные и т.д.;
    • по способу доставки и распределения воды:
      • централизованные;
      • децентрализованные;
      • комбинированные.
    Системы водоснабжения в населенных пунктах предусматривают, как правило, централизованными. При этом в зависимости от местных условий и экономической целесообразности они могут быть раздельными - с собственными источниками водоснабжения для каждой из зон (селитебной или производственной) - или объединенными - с общим источником водоснабжения для обеих зон.
    Децентрализованные (местные) системы водоснабжения строятся для отдельных удаленных локальных потребителей или группы зданий, а также поселков, намеченных к переселению.
      [Журба М. Г., Соколов Л. И., Говорова Ж. М. Водоснабжение: Проектирование систем и сооружений. Учебник. - М.: АСВ, 2003.]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > система водоснабжения

  • 9 эффективность

    1. efficience
    2. efficacité

     

    эффективность
    Связь между достигнутым результатом и использованными ресурсами.
    [ ГОСТ Р ИСО 9000-2008]

    эффективность
    Свойство объекта удовлетворять требованиям к услуге с заданными количественными характеристиками [12].
    Примечание
    Это свойство зависит от сочетания возможностей и готовности объекта.
    [12] Международный стандарт СЕI IЕС 50 (191). Глава 191. Надежность и качество услуг.
    [ОСТ 45.127-99]

    эффективность
    Экономическая категория, характеризующая соотношение экономических, социальных и научно-технических результатов с затратами на их достижение
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    эффективность
    (ITIL Continual Service Improvement)
    Мера целесообразности использования ресурсов для реализации процесса, услуги или деятельности. Эффективный процесс достигает своих целей с минимальными затратами времени, денег, людских и других ресурсов.
    См. тж. ключевой показатель эффективности.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    эффективность
    1. Одно из наиболее общих экономических понятий, не имеющих пока, по-видимому, единого общепризнанного определения. По нашему мнению, это одна из возможных (важнейшая, но не единственная!) характеристик качества некоторой системы, в частности, — экономической: а именно, ее характеристика с точки зрения соотношения затрат и результатов функционирования системы. В зависимости от того, какие затраты и особенно — какие результаты принимаются во внимание, можно говорить об экономической, социально-экономической, социальной, экологической Э. Однако границы между этими понятиями расплывчаты и вокруг них ведутся активные дискуссии. См. Экономическая эффективность, Эффективность капитальных вложений (инвестиционных проектов), Эффективность потребления благ, Эффективность производства, Эффективность экономических решений (мероприяий), Эффективность экономического развития. 2. В экономико-математической литературе слова эффективность, эффективный используются также в составе терминов типа эффективная точка, эффективная технология, эффективная граница. Здесь рассматриваемый термин означает наибольшую степень достижения некоторой цели, выражения какого-то понятия, реализации потенциальной возможности, выполнения задачи и т.п. Например, принимается, что распределение ресурсов, порождаемое экономикой совершенной конкуренции, является эффективным по Парето. 3. То же, что полезность. 4. В математической статистике эффективная статистическая оценка – та, которая имеет минимальную дисперсию.
    [ http://slovar-lopatnikov.ru/]

    EN

    efficiency
    (ITIL Continual Service Improvement)
    A measure of whether the right amount of resource has been used to deliver a process, service or activity. An efficient process achieves its objectives with the minimum amount of time, money, people or other resources.
    See also key performance indicator.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > эффективность

  • 10 взаимозаменяемость

    1. interchangeabilité

     

    взаимозаменяемость
    Способность объекта быть использованным без модификаций вместо другого для выполнения тех же требований.
    Примечания
    1. В зависимости от конкретных условий следует использовать определитель «функциональная взаимозаменяемость» или «размерная взаимозаменяемость».
    2. Вышеприведенное определение применяется в стандартах на качество. Термин «взаимозаменяемость» определен в Руководстве ИСО/МЭК 2.
    [ИСО 8402-94]

    взаимозаменяемость
    Пригодность одного изделия процесса или услуги для использования вместо другого изделия, процесса или услуги в целях выполнения одних и тех же требований.
    Примечание
    Функциональный аспект взаимозаменяемости называется «функциональная взаимозаменяемость», а размерный аспект - «размерная (геометрическая) взаимозаменяемость»
    [ГОСТ 1.1-2002]

    Тематики

    Обобщающие термины

    • термины, связанные с качеством

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > взаимозаменяемость

  • 11 оптимизация

    1. optimisation

     

    оптимизация
    Процесс отыскания варианта, соответствующего критерию оптимальности
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    оптимизация
    1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
    [ http://slovar-lopatnikov.ru/]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    The quest for the optimum

    Вопрос оптимизации

    Throughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.

    На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.

    With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.

    На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.

    Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.

    Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,
    то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.

    This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.

    В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.

    Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.

    Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.

    Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.

    Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.

    The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.

    Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > оптимизация

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»